
Wasm RPC thoughts
https://brionv.com/log/2019/05/10/wasm-rpc-thoughts/

https://brionv.com/log/?p=1887

void canvas_set_size(int w, int h) {
 global_state.w = w;
 global_state.h = h;
}

Foreign functions attached as imports or table entries can be
called with any signature, combining scalar values such as int
and floats:

canvas_set_size(640, 480);

This "just works" until you discover "pointers" and "structs"...

Plugin Wasm

Host Wasm

Wasm Instance

Wasm code

Wasm Instance

Wasm Memory

Wasm code

When dynamic linking, instances can
share a memory and send pointers
directly to each others' functions. But,
they can access beyond the bounds of
provided pointers or violate lifetime
constraints.

This is unsuitable for isolation of
untrusted plugins.

Wasm Instance

Wasm code

Wasm Memory

Wasm Instance

Wasm code

Wasm Memory
Instead we use instances with
separate memories, providing
address space separation.

A common JS "kernel" serves both
Wasm instances with function
imports as privileged "syscalls".

JS code

canvas_t* canvas_new(void) {
 return malloc(sizeof(canvas_t));
}

void canvas_set_size(canvas_t* c, int w, int h)
{
 c->w = w;
 c->h = h;
}

If you use pointers only as
opaque handles accessed
through functions, you could
keep directly sending them:

But this sidesteps the memory
protections -- the other module
may pass any value for the
pointer, accessing arbitrary
memory in your module.

canvas_t* c = canvas_new();
canvas_set_size(c, 640, 480);

Plugin Wasm

Host Wasm

Plugin Wasm

cap_t handle = canvas_new();

cap_t canvas_new(void) {
 canvas_t *c = malloc(sizeof(canvas_t));
 return handle_create(c, canvas_class);
}

If we abstract the handles to
capability references, then things
get interesting.

Instead of directly passing around
pointers, we use a level of
indirection to map between
capability handles and local
pointers.

This requires an intermediary call
on the import to translate values --
a capability must be unforgeable to
be secure, so cap_t values must
be translated between each
module's namespace.

Kernel JS

function canvas_new() {
 return mapping.recvCap(
 mapping.original()
);
}

Host Wasm

canvas_set_size(handle, 640, 480);Each function mapping that
includes caps transfer requires a
signature-specific translator
function in the kernel.

This can be created dynamically
optimized for each signature, or a
generic function using rest/spread
args and an array traversal.

Signatures must be specified
out-of-band for link-time imports,
which requires metadata that's in
sync with your code's ABI.

Note that when receiving a
locally-owned cap, we must
validate it through a syscall to get
the original, unforgeable pointer.

function canvas_set_size(a, b, c) {
 a = mapping.sendCap(a);
 mapping.original(a, b, c);
}

void canvas_set_size(cap_t handle, int w, int h)
{
 canvas_t* c = handle_badge(handle,
 canvas_class);
 if (c) {
 c->w = w;
 c->h = h;
 }
 cap_release(handle);
}

Plugin Wasm

Kernel JS

Host Wasm

Or, we can simplify translation
functions by sending parameters,
both caps and arguments, out of
band, itself through a cap.

This feels weird but doesn't require
telling the kernel about your
argument list structure. You
probably had to write nice C/Rust
wrapper APIs anyway so… not so
bad probably?

Downside is every arg requires
transfer through linear memory,
and you have to play with a lot of
structs.

canvas_set_size_args_t args = {
 .width = 640, .height = 480
};
cap_t msg = msg_create(
 &args, sizeof(args), // send data
 &handle, 1, // send caps
 NULL, 0, // recv data
 NULL, 0 // recv caps
);
canvas_set_size(msg);
msg_free(msg);

void canvas_set_size(cap_t msg)
{
 canvas_set_size_args_t args;
 cap_t handle;
 msg_recv(msg, &args, sizeof(args), &handle, 1);
 canvas_t* c = handle_badge(handle,
 canvas_class);
 if (c) {
 c->w = args.width;
 c->h = args.height;
 cap_release(handle);
 }
}

Plugin Wasm

Host Wasm

int canvas_set_size(cap_t msg, int a, int b, int c, int d)
{
 cap_t handle;
 msg_recv_caps(msg, &handle, 1);
 canvas_t* c = handle_badge(handle,
 canvas_class);
 if (c) {
 c->w = a;
 c->h = b;
 cap_release(handle);
 }
 return 0;
}

cap_t msg = msg_create(
 &handle, 1, // send caps
 NULL, 0 // recv caps
);
canvas_set_size(msg, 640, 480, 0, 0);
msg_free(msg);

Plugin Wasm

Host Wasm

A limited number of fixed integer
args and an integer retval could be
added for efficiency on common
cases with buffers passed explicitly
when needed.

Only one translation function would
be required, accepting that fixed
number of arguments and
translating only the message cap.

This is similar to how messages on
L4 are optimized to use
register-passing for the first few
integer arguments.

It feels inelegant though, as
floating point and caps still have to
go through the message.

Capability namespacing requires some thought.

Use a JS array of object references (or multiple JS arrays with
synchronized pointers to minimize object allocations) indexed by
the cap_t value as an expandable stack.

Index 0 is reserved for CAP_NULL.

Released caps are replaced with a dead-value indicator in the JS
arrays, and their index is added to a second stack.

When allocating or receiving a new cap, the most recently freed
cap index is popped from the released stack and the dead-value
indicator is replaced with the new object.

This prevents the caps namespace from growing without end
when sending/receiving many messages, and keeps the
re-allocation search constant-time at the expense of some
memory.

0 = null
1 = handle<0x12345678>
2 = sendbuf<0x23456789, 32>
3 = released
4 = released
5 = handle<0x34567891>

0 = 4
1 = 3

// next index to be reused
// will be 3

Caps stack

Released stack

Isolation guarantees
Yay:

● Memory usage can be bounded.
● Modules can only alter each other's memory with a grant.
● Modules can only call each other via imports granted to

them at setup or dynamically added by the kernel.
● Traps/exceptions in a sync call can be caught at the syscall

boundary.

But:
● Sync calls may never yield control of CPU.
● Incoming sync calls may be close to the stack limit, which

may cause you to trap when innocently recursing.
● Wasm traps will cause the execution stack to unwind to the

syscall boundary, but will not run destructors, finally
clauses, or other cleanup code in your C/C++/Rust -- not
even fixing the linear-memory stack pointer!

Traps might be handled by killing the offending module, or maybe
killing the entire process.

Wasm Instance

Wasm Memory

Wasm Instance

Wasm Memory

Browsers support asynchronous
event-loop messaging between separate
CPU threads running in Web Workers.

Sync calls are not possible with this
model, but other capabilities such as
async message ports and buffer
transfers with an intermediate copy can
be done.

Note that some browser APIs
such as network access and
compiling new WebAssembly
modules require a run
through the event loop as
well.

Asynchronous worker extensionsWasm Instance

Wasm code

Wasm Memory

Wasm Instance

Wasm code

Wasm Memory

MessagePort

MessagePort

Worker's event loop

Some browsers have re-enabled JavaScript's SharedArrayBuffer
and the WebAssembly extension to use them as memories.

This allows multithreaded WebAssembly modules by creating
the same module graph in multiple Workers, each instance
sharing a memory with its co-instances in other threads but still
separate from other modules' instances.

Sync calls across modules in separate threads/processes would
also be possible, using suitable locks.

But beware! You must still exit to the event loop to obtain new
WebAssembly module instances, which can lead to thread
synchronization issues when linking new modules.

Multithreading extensions

Next steps?

Get it down on paper:
● Decide on metadata format for signature

translation, or whether to stick with message
buffers.

● Code up C and Rust APIs for syscall interface and
a couple sample APIs using it

● Proof-of-concept JS kernel for running in browser

Possible examples?
● API to the JS kernel to dynamically load new

Wasm modules and populate them with imports
● Photo/paint program with filter plugins or file

format translators
● Fractal viewer with calculation plugins

End.. for now!

